Hydrogels in Tissue Engineering and Drug Delivery: A Comprehensive Review

Authors

  • Setareh Chalkosh Amiri Mechanical Engineering Department, Morvarid Intelligent Industrial Systems Research Group, Iran.
  • Hanieh Jannat Sadeghi * Mechanical Engineering Department, Morvarid Intelligent Industrial Systems Research Group, Iran. https://orcid.org/0000-0001-5905-7923

https://doi.org/10.48313/bic.vi.40

Abstract

Hydrogels are highly hydrated three-dimensional polymeric networks that have emerged as versatile biomaterials for tissue engineering and drug delivery due to their excellent biocompatibility, tunable mechanical and physicochemical properties, and close resemblance to the native Extracellular Matrix (ECM). In tissue engineering, hydrogels act as bioactive scaffolds that support cell adhesion, proliferation, differentiation, and vascularization. Their adjustable stiffness, porosity, and controlled biodegradability facilitate the regeneration of various tissues, including skin, cartilage, bone, and neural tissue. In drug delivery, hydrogels function as intelligent reservoirs capable of sustained, localized, and stimuli-responsive (e.g., pH, temperature, redox, enzymatic, or light) release of therapeutic agents, enhancing treatment efficacy while minimizing off-target effects. Recent advances in self healing, injectable, nanocomposite, and 3D/4D bioprinted hydrogels along with the integration of bioactive molecules and cell-laden constructs have further expanded their potential for clinical translation. This review summarizes key design principles, emerging material innovations, and major translational challenges, highlighting the growing impact of hydrogels in regenerative medicine and precision therapeutics.

Keywords:

Hydrogels, Tissue engineering, Drug delivery, Stimuli-responsive, Biomaterials, Regenerative medicine

References

  1. [1] Lee, K. Y., & Mooney, D. J. (2001). Hydrogels for tissue engineering. Chemical reviews, 101(7), 1869–1880. https://doi.org/10.1021/cr000108x

  2. [2] Hoffman, A. S. (2012). Hydrogels for biomedical applications. Advanced drug delivery reviews, 64, 18–23. https://doi.org/10.1016/j.addr.2012.09.010

  3. [3] Peppas, N. A., Hilt, J. Z., Khademhosseini, A., & Langer, R. (2006). Hydrogels in biology and medicine: From molecular principles to bionanotechnology. Advanced materials, 18(11), 1345–1360. https://doi.org/10.1002/adma.200501612

  4. [4] Caló, E., & Khutoryanskiy, V. V. (2015). Biomedical applications of hydrogels: A review of patents and commercial products. European polymer journal, 65, 252–267. https://doi.org/10.1002/adma.200501612

  5. [5] Boateng, J. S., Matthews, K. H., Stevens, H. N. E., & Eccleston, G. M. (2008). Wound healing dressings and drug delivery systems: A review. Journal of pharmaceutical sciences, 97(8), 2892–2923. https://doi.org/10.1002/jps.21210

  6. [6] Makris, E. A., Gomoll, A. H., Malizos, K. N., Hu, J. C., & Athanasiou, K. A. (2015). Repair and tissue engineering techniques for articular cartilage. Nature reviews rheumatology, 11(1), 21–34. https://doi.org/10.1038/nrrheum.2014.157

  7. [7] Tuan, R. S., Boland, G., & Tuli, R. (2002). Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis research & therapy, 5(1), 32-45. https://doi.org/10.1186/ar614

  8. [8] Rezwan, K., Chen, Q. Z., Blaker, J. J., & Boccaccini, A. R. (2006). Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials, 27(18), 3413–3431. https://doi.org/10.1016/j.biomaterials.2006.01.039

  9. [9] Bose, S., Vahabzadeh, S., & Bandyopadhyay, A. (2013). Bone tissue engineering using 3D printing. Materials today, 16(12), 496–504. https://doi.org/10.1016/j.mattod.2013.11.017

  10. [10] Annabi, N., Zhang, Y. N., Assmann, A., Sani, E. S., Cheng, G., Lassaletta, A. D., ... ., & Khademhosseini, A. (2017). Engineering a highly elastic human protein–based sealant for surgical applications. Science translational medicine, 9(410), eaai7466. https://doi.org/10.1126/scitranslmed.aai7466

  11. [11] Li, J., & Mooney, D. J. (2016). Designing hydrogels for controlled drug delivery. Nature reviews materials, 1(12), 1–17. https://doi.org/10.1038/natrevmats.2016.71

  12. [12] Qiu, Y., & Park, K. (2001). Environment-sensitive hydrogels for drug delivery. Advanced drug delivery reviews, 53(3), 321–339. https://doi.org/10.1016/S0169-409X(01)00203-4

  13. [13] Buwalda, S. J., Boere, K. W. M., Dijkstra, P. J., Feijen, J., Vermonden, T., & Hennink, W. E. (2014). Hydrogels in a historical perspective: From simple networks to smart materials. Journal of controlled release, 190, 254–273. https://doi.org/10.1016/j.jconrel.2014.03.052

  14. [14] Koetting, M. C., Peters, J. T., Steichen, S. D., & Peppas, N. A. (2015). Stimulus-responsive hydrogels: Theory, modern advances, and applications. Materials science and engineering: R: Reports, 93, 1–49. https://doi.org/10.1016/j.mser.2015.04.001

  15. [15] Stuart, M. A. C., Huck, W. T., Genzer, J., Müller, M., Ober, C., Stamm, M., ... ., & Minko, S. (2010). Emerging applications of stimuli-responsive polymer materials. Nature materials, 9(2), 101-113. https://doi.org/10.1038/nmat2614

  16. [16] Li, Y., Rodrigues, J., & Tomás, H. (2012). Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chemical society reviews, 41(6), 2193–2221. https://doi.org/10.1039/C1CS15203C

  17. [17] Sun, J. Y., Zhao, X., Illeperuma, W. R. K., Chaudhuri, O., Oh, K. H., Mooney, D. J., … ., & Suo, Z. (2012). Highly stretchable and tough hydrogels. Nature, 489(7414), 133–136. https://doi.org/10.1038/nature11409

  18. [18] Yuk, H., Zhang, T., Parada, G. A., Liu, X., & Zhao, X. (2016). Skin-inspired hydrogel-elastomer hybrids with robust interfaces and functional microstructures. Nature communications, 7(1), 12028. https://doi.org/10.1038/ncomms12028

  19. [19] Murphy, S. V, & Atala, A. (2014). 3D bioprinting of tissues and organs. Nature biotechnology, 32(8), 773–785. https://doi.org/10.1038/nbt.2958

  20. [20] Wei, S. Y., Chen, T. H., Kao, F. S., Hsu, Y. J., & Chen, Y. C. (2022). Strategy for improving cell-mediated vascularized soft tissue formation in a hydrogen peroxide-triggered chemically-crosslinked hydrogel. Journal of tissue engineering, 13, 20417314221084096. https://doi.org/10.1177/20417314221084096

  21. [21] Zhu, J., & Marchant, R. E. (2011). Design properties of hydrogel tissue-engineering scaffolds. Expert review of medical devices, 8(5), 607–626. https://doi.org/10.1586/erd.11.27

  22. [22] Zhu, J. (2010). Bioactive modification of poly (ethylene glycol) hydrogels for tissue engineering. Biomaterials, 31(17), 4639–4656. https://doi.org/10.1016/j.biomaterials.2010.02.044

  23. [23] Motallebi Tala Tapeh, S., Baei, M. S., & Keshel, S. H. (2021). Synthesis of thermogel modified with biomaterials as carrier for hUSSCs differentiation into cardiac cells: Physicomechanical and biological assessment. Materials science and engineering: c, 119, 111517. https://doi.org/10.1016/j.msec.2020.111517

Published

2025-06-23

How to Cite

Chalkosh Amiri, S. ., & Jannat Sadeghi, H. . (2025). Hydrogels in Tissue Engineering and Drug Delivery: A Comprehensive Review. Biocompounds, 2(2), 128-137. https://doi.org/10.48313/bic.vi.40

Similar Articles

1-10 of 13

You may also start an advanced similarity search for this article.